In accordance with analysis of various examples, this paper points out that so far as same primitive sequence is concerned, forecasting value of GM(1,1) enlarges when the calculating null point rises, and the second term of the new sequence decreases, and cumulative number increases.
根據(jù)各種應(yīng)用實例的分析,指出對于同一原始序列來說,當(dāng)計算零點(diǎn)升高、新序列的第二項減小或累加次數(shù)增多時,GM(1,1)模型的預(yù)測值增大,同時指出這些問題是由GM(1,1)模型本身的特點(diǎn)所決定的。
So in this paper,an improved gray forecasting model was proposed based on the basic principles of grey model which use one-accumulated exponential model.
灰色預(yù)測模型要求原始數(shù)據(jù)序列滿足指數(shù)規(guī)律,而實際上城市用水波動性大,無典型指數(shù)趨勢變化,而一般呈代數(shù)曲線形式變化,因此本文提出了改進(jìn)的灰色模型在城市年用水量預(yù)測中的應(yīng)用,改進(jìn)的灰色預(yù)測模型主要基于灰色預(yù)測模型一次累加的建模思路。
s one-accumulate living water quantity time-series data have the obvious line trend; The industry water quantity time-series data obey one kind of variety polynomial.
在對某市年用水量隨機(jī)時間序列原始數(shù)據(jù)進(jìn)行預(yù)處理的基礎(chǔ)上,發(fā)現(xiàn)年生活用水量的一次累加時間序列數(shù)據(jù)具有明顯的線性趨勢。
Because of the city s annual water consumption forecasting time-series has the characteristics of randomness,and one-accumulate methods has the characteristics of smoothing time-series randomness,improving rule ness and it s easy for regressing.
基于年需水量原始時間序列具有非線性隨機(jī)變化的特點(diǎn),而一次累加法具有削弱時間序列隨機(jī)性、增加時間序列規(guī)律性、便于回歸函數(shù)擬合的特點(diǎn),該文提出了一次累加回歸分析法在城市年需水量預(yù)測中的應(yīng)用。