Green's functions for some boundary value problems of ordinary differential equations
一類常微分方程邊值問(wèn)題的格林函數(shù)求法
Calculation of spatial-domain Green's functions for multi-layered media by discrete complex image method;
離散復(fù)鏡像法求取層狀介質(zhì)的格林函數(shù)
The difference equation for lattice dynamics Green's functions of a crystal nano-wire are solved,the lattice vibrations are analyzed,and the formulas for atomic displacements and Hamiltonian in phonon occupation number representation are obtained.
通過(guò)求解差分方程,推導(dǎo)了納米晶體線的晶格動(dòng)力學(xué)格林函數(shù),分析了其晶格振動(dòng),并推導(dǎo)了聲子數(shù)表象中的原子位移及晶格振動(dòng)哈密頓公式。
Approximation of time-domain Green function for finite water depth and its derivatives;
時(shí)域有限水深格林函數(shù)及其導(dǎo)數(shù)的數(shù)值計(jì)算
Application of quasi-green function method for each operator;
準(zhǔn)格林函數(shù)方法在各算子中的應(yīng)用
Approximation of time-domain Green function in finite water depth;
時(shí)域有限水深格林函數(shù)的多項(xiàng)式展開計(jì)算方法
The analytic solution of Green-function is presented under the boundary conditions,and the relationship between absortion factor Δμ_a and flux J_n is figured out.
進(jìn)一步改進(jìn)了已有物理模型,從理論上解決了三維有限體積內(nèi)光子密度波擴(kuò)散方程的求解問(wèn)題,得到了長(zhǎng)方體邊界條件下的格林函數(shù)的解析解,給出了實(shí)驗(yàn)可測(cè)量光通量與待測(cè)物吸收系數(shù)改變量之間可進(jìn)行數(shù)值計(jì)算的表達(dá)式。
The applications of Green-functions with diffusion equation are summarized.
在分析有關(guān)格林函數(shù)在光子密度波擴(kuò)散方程中應(yīng)用情況的基礎(chǔ)上,根據(jù)所設(shè)定的實(shí)驗(yàn)?zāi)P鸵?將展開法與電像法相結(jié)合求解了滿足擴(kuò)散方程的格林函數(shù),并詳細(xì)推導(dǎo)了獲得該函數(shù)的過(guò)程。
Within a random phase approximation,the quantum Heisenberg ferromagnetic chain with long-range interaction proportional to r-p was studied by Green-function method.
在無(wú)規(guī)相近似理論框架下,運(yùn)用格林函數(shù)方法研究了一維帶有長(zhǎng)程有序作用的量子海森堡鐵磁模型,結(jié)果發(fā)現(xiàn),如果自旋相互作用采用指數(shù)衰變r(jià)-p形式,當(dāng)1
5-D FEM is used for calculating Fréchet derivatives in the crosshole resistivity image and three kinds of calculating techniques, namely, standard method, Green function method and perturbation approach are presented respectively.
5維有限元法,對(duì)井間電阻率成像中的二極(AM)裝置,分別用標(biāo)準(zhǔn)方法,格林函數(shù)法和擾動(dòng)法計(jì)算了Fréchet導(dǎo)數(shù)數(shù)值解,并對(duì)三種算法作了比
In the end,the parameters such as total heat load,aerodynamic heating rate and some indirect were analyzed and simulated with Green function method.
采用間接分析總熱載荷、氣動(dòng)加熱率、動(dòng)壓等相關(guān)參數(shù)的方法,利用"格林函數(shù)法"對(duì)模型進(jìn)行仿真。
Full Solving Green's Function for Cylindrically Stratified Media PartⅡ:Mixed Potential Green's Function
圓柱分層介質(zhì)中格林函數(shù)的完整求解Ⅱ:混合位格林函數(shù)
Full Solving Green′s Function for Cylindrically Stratified Media Part Ⅰ:Green′s Function of Electric and Magnetic Fields
圓柱分層介質(zhì)中格林函數(shù)的完整求解 Ⅰ:場(chǎng)型格林函數(shù)
Applications of FDTD and Green Function Methods in PSTM Imaging;
FDTD與格林函數(shù)算法在PSTM成像中的應(yīng)用
About Green Function of Circle x~2+y~2≤R~2;
關(guān)于圓x~2+y~2≤R~2的格林函數(shù)
Solving Green function in multilayer media using improved DCIM
改進(jìn)DCIM求解分層媒質(zhì)中的格林函數(shù)
An empirical Green function approach with asperity model considered
考慮凹凸體理論的經(jīng)驗(yàn)格林函數(shù)方法
Efficient Calculation of 3D Frequency-domain Green Functions
三維頻域格林函數(shù)的高效率計(jì)算方法
THE GREEN FUNCTIONS ON CAYLEY HEISENBERG GROUPS
凱萊-海森堡群上的格林函數(shù)(英文)
NUMERICAL INVESTIGATION OF JET NOISE BASED ON ADJOINT GREEN FUNCTION
基于伴隨格林函數(shù)法射流噪聲的研究
An explicit derivation of non-equilibrium Green function formula from scattering wave function approach
從散射波函數(shù)方法中導(dǎo)出的非平衡格林函數(shù)公式
Green function( GF) is widely applied in electromagnetic fields theory.
格林函數(shù)在電磁場(chǎng)理論中有著非常廣泛的應(yīng)用.
Green Quasifunction Method in Two Dimensional Helmholtz Operator
二維亥姆霍茲算子中的準(zhǔn)格林函數(shù)方法
Application of Dyadic Green's Function to Analysis for Field of Anechoic Chamber;
并矢格林函數(shù)對(duì)電波暗室的場(chǎng)強(qiáng)分析應(yīng)用
Study on the Improved Quasi-Static Nodal Green s Function Method under Cylinder Goemetry;
圓柱幾何下改進(jìn)準(zhǔn)靜態(tài)格林函數(shù)節(jié)塊法的研究
Study on the Dyadic Green s Functions for the Electromagnetic Wave Field in Particular Media;
特殊媒質(zhì)中電磁波場(chǎng)并矢格林函數(shù)問(wèn)題的研究
Applications of Path Integral in Study of the Green Function of One Dimensional System;
應(yīng)用路徑積分方法研究一維系統(tǒng)的格林函數(shù)
Electronic Transport Properties of Quasi-one Dimensional Quantum Structure: Green s Function Approach;
準(zhǔn)一維量子結(jié)構(gòu)的電子輸運(yùn)性質(zhì):格林函數(shù)方法
Green s Function Approach to Physical Properties of Low Dimensional Mesoscopic System;
低維介觀體系物理特性的格林函數(shù)方法研究