For extracting higher order frequency coupling feature radiated by actual nonlinear vibration system via odd-order cumulants(OOC),quartic frequency coupling and quadratic-to-cubic frequency coupling were firstly defined,OOC features analyzed,the relation between OOC calculation method and its computational load was studied.
為了用奇數(shù)階累積量提取非線性振動(dòng)系統(tǒng)的高次頻率耦合特征,定義了四次頻率耦合、二三對(duì)頻率耦合等高次耦合新概念,分析了奇數(shù)階累積量特征,研究了奇數(shù)階累積量計(jì)算方法與計(jì)算量間的關(guān)系,提出了奇數(shù)階累積量計(jì)算優(yōu)化算法,該算法將奇數(shù)階累積量的直接估計(jì)變?yōu)檫f推估計(jì),將奇數(shù)階累積量的多維運(yùn)算轉(zhuǎn)化為一維運(yùn)算,大幅度減小了計(jì)算量,在工程上具有可實(shí)現(xiàn)性。
The paper has discussed such problims as the properties of sub-eigenvalue and sub-eigenvector of real-anti-sub-symmetric matrix,and its diagonalization.
討論了實(shí)反次對(duì)稱矩陣的次特征值與次特征向量的性質(zhì)及實(shí)反次對(duì)稱矩陣的對(duì)角化問題。
An algorithm to recognize unconstrained handwritten numerals based on centroid layer feature is proposed in this paper.
采用了基于字符質(zhì)心的層次特征對(duì)無約束手寫體數(shù)字進(jìn)行分類識(shí)別。
Some main properties of sub-characteristic value of general real matrix are given,and sub-characteristic value of(anti) asymmetric matrix,(anti) sub-symmetric matrix,sub-orthogonal matrix,involutary matrix and idempotent matrix is studied.
給出了一般實(shí)方陣次特征值的一些主要性質(zhì),并對(duì)(反)對(duì)稱陣、(反)次對(duì)稱陣、次正交矩陣,以及對(duì)合矩陣與冪等矩陣的次特征值的取值情況進(jìn)行了研究,得到了一些新結(jié)果。
This paper includes theorems such as the one that the real parts of the sub-characteristic values belonged to an n-square metapositive definite complex matrix are positive,and that if JA is a normal composite matrix,then A is a metapositive definite complex matrix if and only if the real part of the sub-characteristic value belonged to A is real.
研究了復(fù)矩陣的次正定性的性質(zhì)和一系列充分必要條件,得到了“n階次正定復(fù)矩陣的次特征值實(shí)部為正”與“當(dāng)JA為復(fù)正規(guī)矩陣時(shí),A是次正定復(fù)矩陣的充分必要條件是A的次特征值實(shí)部為正”等結(jié)論;討論并給出了矩陣乘積是次正定復(fù)矩陣的充分和充要條件;得到了與著名的Ostrowski-Taussky不等式、Hadamard不等式、Oppenhein不等式等相應(yīng)的重要結(jié)果。
It was proved that the real parts of the sub-characteristic values of an n-order metapositive semi-definite matrix are positive and,when JA is a normal real matrix,then A is a metapositive semi-definite matrix if and only if the real part of the sub-characteristic value of A is real.
研究了次亞正定矩陣的性質(zhì)和一系列充分必要條件,主要得到了2 個(gè)結(jié)論:(1) n階次亞正定矩陣的次特征值實(shí)部為正;(2) 當(dāng)JA為實(shí)正規(guī)矩陣時(shí),A是次亞正定矩陣的充分必要條件是A 的次特征值實(shí)部為正。
The Differentiability of Characteristic Value and Characteristic Vector in Quadratic Characteristic Value Problem
二次特征值問題中特征值和特征向量的可微性
Spectral Inclusion Regions of Partitioned Matrices and Inclusion Regions of Inhomogeneous Eigenvalue;
分塊矩陣特征值包含域和非齊次特征值包含域
CALCULATION OF THE FIRST AND SECOND ORDER PARTIAL DERIVATIVES OF EIGENPAIRS OF QUADRATIC EIGENVALUE PROBLEMS
二次特征值問題特征對(duì)的一階與二階偏導(dǎo)數(shù)
Numerical Approaches to Robust Partial Quadratic Eigenvalue Assignment Problems
魯棒部分二次特征值配置問題的數(shù)值方法
Structured Quadratic Inverse Eigenvalue Problems from the Second-order RLC Circuit Designing
二階RLC電路設(shè)計(jì)中的結(jié)構(gòu)化二次特征值反問題
Solving Method for Structured Quadratic Inverse Eigenvalue Problem
帶結(jié)構(gòu)的二次特征值反問題的求解方法
A direct projection method with refined vector for quadratic eigenvalue problems
求解二次特征值問題的添加精化向量的直接法
Symmetric and Skew Anti-symmetric Solution of Inverse Quadratic Eigenvalue Problem and Its Optimal Approximation
二次特征值反問題的對(duì)稱次反對(duì)稱解及其最佳逼近
A refined second-order Arnoldi method;
求解大型稀疏二次特征值問題的精化的二階Arnoldi方法
Dirichlet eigenvalue estimates for p-sub-Laplacian in the Heisenberg group;
Heisenberg群上p-次Laplace算子的Dirichlet特征值估計(jì)
The Analysis of Anisotropic Property of Quadratic Triangular Element;
三角形二次元插值的各向異性特征分析
Study on a Class of Inverting Higher Degree Adjoint Matrix and Eigenvalues;
一類逆高次伴隨矩陣及其特征值的研究
The Characteristic Values and the Standard Form of a Quadratic Form Represented with a Real Symmetrical Determinant;
實(shí)對(duì)稱行列式表示的二次型的特征值與標(biāo)準(zhǔn)形
Study on existence of eigenvalue for sub-laplacian on Heisenberg group
Heisenberg群上的次拉普拉斯算子特征值存在性證明
The numerical simulative analysis on characteristic of boundary layer in MCS on 5 July,2004
一次東北冷渦MCS邊界層特征數(shù)值模擬分析
Lloyd's numeral
勞氏特征數(shù)特征的數(shù)值)
The roots ?? of the characteristic equations are known as eigenvalues, or Characteristic Values.
特征方程之根??稱為本征值或特征值。
Research on Sturm-Liouville Eigenvalue Problems
Sturm-Liouville特征值問題